If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4n^2+10n-43=7
We move all terms to the left:
4n^2+10n-43-(7)=0
We add all the numbers together, and all the variables
4n^2+10n-50=0
a = 4; b = 10; c = -50;
Δ = b2-4ac
Δ = 102-4·4·(-50)
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-30}{2*4}=\frac{-40}{8} =-5 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+30}{2*4}=\frac{20}{8} =2+1/2 $
| (2x=3)/5=11 | | 2x+1=5x+4=53 | | 3x2-18x+27=125 | | 2+5z=32 | | 2x=3/5=11 | | 3/4p=24 | | -80-9x=-14x+90 | | -6x-121=111-14x | | a2−10a+21=(a−7) | | 4y+5+3y=7y+5 | | 4n+7=3 | | 2.2x-5=2.8x+11 | | -10x+7(3)=-23 | | v/8=6/4 | | 3(m-27)=3 | | 5x+2/3×=180 | | 14x-103=-3x+237 | | 5-8n=-67 | | -67-5x=-8x+20 | | (z/2)+1=9-(z/2) | | 44300-25272x=2808 | | 641=x+354 | | 44300-25272x=28080*10/100 | | -3n-16-16=4n-44 | | x-25=-42 | | 44300-25272x=28080*5/100*2 | | 10n-6=184 | | 63/a+4=11 | | -11x-200=-1x+100 | | 4(-4)+7y=19 | | 44300-25272x=28080*5/100 | | .05=20/x |